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A B S T R A C T
In a Software Product Line (SPL) system, variability bugs can cause failures in certain products (buggy
products), not in the others. In practice, variability bugs are not always exposed, and buggy products
can still pass all the tests due to their ineffective test suites (so-called false-passing products). The
misleading indications caused by those false-passing products’ test results can negatively impact
variability fault localization performance. In this paper, we introduce CLAP, a novel approach to
detect false-passing products in SPL systems failed by variability bugs. Our key idea is that given
a set of tested products of an SPL system, we collect failure indications in failing products based on
their implementation and test quality. For a passing product, we evaluate these indications, and the
stronger indications, the more likely the product is false-passing. Specifically, the possibility of the
product to be false-passing is evaluated based on if it has a large number of the statements which
are highly suspicious in the failing products, and if its test suite is in lower quality compared to the
failing products’ test suites. We conducted several experiments to evaluate our false-passing product
detection approach on a large benchmark of 14,191 false-passing products and 22,555 true-passing
products in 823 buggy versions of the existing SPL systems. The experimental results show that CLAP
can effectively detect false-passing and true-passing products with the average accuracy of more than
90%. Especially, the precision of false-passing product detection by CLAP is up to 96%. This means,
among 10 products predicted as false-passing products, more than 9 products are precisely detected.
Furthermore, we propose two simple and effective methods to mitigate the negative impact of false-
passing products on variability fault localization. These methods can improve the performance of the
state-of-the-art variability fault localization techniques by up to 34%.

1. Introduction
Thorough testing is generally required to guarantee the

quality of programs. However, it is often hard, tedious, and
time-consuming to conduct thorough testing in practice.
Various bugs could be neglected by the test suites since it
is extremely difficult to cover all the programs’ behaviors.
Moreover, there are kinds of bugs which are challenging to
be detected due to their difficulties in infecting the program
states and propagating their incorrectness to the outputs [1].
Consequently, even when they reached the defects, there
are test cases that still obtain correct outputs. Such test
cases are called coincidentally correct/passed tests. Indeed,
coincidental correctness is a prevalent problem in software
testing [2], and this phenomenon causes a severely negative
impact on fault localization performance [2, 3, 4].

Similar to testing in non-configurable code, the coin-
cidental correctness phenomenon also happens in software
product lines (SPL) and causes difficulties in finding faults
in these systems. Specifically, for an SPL system, a set of
products is often sampled for testing. Each sampled product
is composed of a set of features of the system and tested
individually by its test suite as a singleton program. For
a buggy SPL system, the bugs could be in one or more
products. Ideally, if a product contains bugs (buggy prod-
ucts), the bugs should be revealed by its test suite. In other
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words, there should be at least a failed test after testing.
However, if the test suite of a buggy product is ineffective
in detecting the bugs, the product’s overall test result will be
passing. For instance, the suite does not cover the product’s
buggy statements or those test cases could reach the buggy
statements but could not propagate the incorrectness to the
outputs, the product still passes all the tests. Such a passing
product is indeed a buggy product, yet incorrectly considered
as passing. That passing product is namely a false-passing
product. Due to the unreliability of test results, these false-
passing products might negatively impact the fault localiza-
tion (FL) performance. In particular, the performance of two
main spectrum-based FL strategies in SPL systems, product-
based and test case-based, is affected.

First, the product-based FL techniques [5, 6] evaluate
the suspiciousness of a statement in a buggy SPL system
based on the appearance of the statement in failing and/or
passing products. Specially, the key idea to find bugs in
an SPL system is that a statement which is included in
more failing products and fewer passing products is more
likely to be buggy than the other statements of the system.
Misleadingly counting a buggy product as a passing product
incorrectly decreases the number of failing products and in-
creases the number of passing products containing the buggy
statement. Consequently, the buggy statement is considered
less suspicious than it should be.

Second, the test case-based FL techniques [6, 7] measure
the suspicious scores of the statements based on the numbers
of failed and passed tests executed by them. Indeed, false-
passing products could lead to under-counting the number
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of failed tests and over-counting the number of passed tests
executed by the buggy statements. The reason is that false-
passing products contain bugs, but there is no failed test. In
these false-passing products, the buggy statements are not
executed by any test, or they are reached by several tests,
yet those tests coincidentally passed. Both low coverage test
suite and coincidentally passed tests can cause inaccurate
suspiciousness evaluation for the buggy statements.

In this paper, we introduce CLAP, a novel false-passing
product detection approach for SPL systems that failed be-
cause of variability bugs (buggy SPL systems for short). The
intuition of our approach is that for a buggy SPL system, the
sampled products can share some common functionalities. If
the unexpected behaviors of the functionalities are revealed
by the tests in some (failing) products, the other products
having similar functionalities are likely to be caused fail-
ures by those unexpected behaviors. In CLAP, false-passing
products can be detected based on the failure indications
which are collected by reviewing the implementation and
test quality of the failing products. To evaluate the possibility
that a passing product is a false-passing one, we propose
several measurable attributes to assess the strength of these
failure indications in the product. The stronger indications,
the more likely the product is false-passing.

The proposed attributes are belonged to two aspects:
product implementation (products’ source code) and test
quality (the adequacy and the effectiveness of test suites).
The attributes regarding product implementation reflect the
possibility that the passing product contains bugs. Intu-
itively, if the product has more (suspicious) statements ex-
ecuting the tests failed in the failing products of the system,
the product is more likely to contain bugs. For the test quality
of the product, the test adequacy reflects how its suite covers
the product’s code elements such as statements, branches,
or paths [8]. A low-coverage test suite could be unable to
cover the incorrect elements in the buggy product. Hence,
the product with a lower-coverage test suite is more likely
to be false-passing. Meanwhile, the test effectiveness reflects
how intensively the test suite verifies the product’s behaviors
and its ability to explore the product’s (in)correctness [9, 10].
The intuition is that if the product is checked by a test suite
which is less effective, its overall test result is less reliable.
Then, the product is more likely to be a false-passing one.

Furthermore, we discuss several strategies to mitigate
the impact of false-passing products on FL approaches.
Since the negative impact is mainly caused by the unrelia-
bility of the test results, our goal is to improve the reliability
of the test results by enhancing the test quality based on the
failure indications. Moreover, the reliability of test results
could also be improved by disregarding the unreliable test
results at either product-level or test case-level.

We conducted several experiments on a large dataset
of variability bugs which contains 823 buggy versions of
six widely-used SPL systems [11]. Totally, there are 14,191
false-passing products and 22,555 true-passing products.
Our results show that CLAP achieves more than 90% Accu-
racy in detecting false-passing and true-passing products.

Especially, the Precision of CLAP in false-passing product
detection is up to 96%. This means, among 10 products
predicted as false-passing products by CLAP, there are more
than 9 products which are indeed false-passing ones.

We also evaluate the capability of CLAP in mitigating
the negative impact of false-passing products on the FL
performance. We conducted experiments on two state-of-
the-art variability fault localization approaches with the five
most popular SBFL ranking metrics [7, 12]. Interestingly,
CLAP can significantly improve their performance in ranking
buggy statements by up to 30%. This shows that CLAP
can greatly mitigate the negative impact of false-passing
products on localizing variability bugs and help developers
find bugs much faster.

In brief, this paper makes the following contributions:
1. The formulation of the false-passing product detection

problem in SPL systems and a large benchmark for
evaluating false-passing product detection techniques.

2. CLAP: an effective approach to detect false-passing
products in SPL systems and mitigate their negative
impact on variability fault localization performance.

3. An extensive empirical evaluation to show the ef-
fectiveness of CLAP in both detecting false-passing
products and mitigating their negative impact on vari-
ability fault localization performance in SPL systems.

The benchmark and implementation of CLAP could be
found in details in: https://ttrangnguyen.github.io/CLAP/.

2. Motivation and Problem Formulation
2.1. Motivation

To empirically investigate the impact of false-passing
products on FL, we conduct a preliminary study on 600
buggy versions of six SPL systems in a dataset of variability
bugs [11]. For each buggy version, we simulate the existence
of false-passing products by modifying the test suites of
a random number of failing products. Specially, all the
failed tests in the test suite 𝑇 of each selected product 𝑝
are removed. Once all the failed tests in 𝑇 are removed to
create test suite 𝑇 ′, the bugs in 𝑝 revealed by 𝑇 would not
be revealed by 𝑇 ′. As a result, 𝑝 becomes a false-passing
product with test suite 𝑇 ′. After the simulation, each buggy
version contains three groups of products: (1) failing prod-
ucts which contain both failed and passed tests; (2) false-
passing products which were originally failing products, yet
their failed tests were removed; and (3) passing products
which originally passed all the tests.

We apply two state-of-the-art FL approaches, spectrum-
based FL (SBFL) [7] and VARCOP [6] to localize the vari-
ability bugs in each buggy system with and without the
existence of the (simulated) false-passing products. With
the existence of false-passing products (With FPs), testing
information of all the three groups of products, i.e., failing
products, false-passing products, and passing products, are
used to measure the suspiciousness of the statements in the
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Table 1
Empirical study about the impact of false-passing products on
variability fault localization performance (in Rank)

Ranking Metrics VarCop SBFL

With
FPs

Without
FPs

With
FPs

Without
FPs

Tarantula 11.47 6.25 9.92 8.22
Ochiai 7.93 5.05 7.38 5.91
Op2 6.40 5.71 7.31 7.15
Barinel 11.89 5.66 9.91 8.22
Dstar 7.13 4.87 7.36 5.91

systems. Meanwhile, without the existence of false-passing
products (Without FPs), testing information of only failing
products and passing products are used for localizing faults.

Table 1 shows the average Rank of the buggy statements
which are localized by VARCOP and SBFL using the five
most popular ranking metrics. As seen, the presence of false-
passing products after testing could significantly reduce
the performance of the FL techniques. On average, with
the presence of false-passing products, the results of both
VARCOP and SBFL are significantly decreased by 60% and
20%, respectively. For instance, without the existence of the
false-passing products, the buggy statements can be found
after investigating 6 and 8 statements ranked by VARCOP
and SBFL using Tarantula as the ranking metric. However,
due to the presence of the false-passing products, by SBFL
and VARCOP, to hit the bugs, developers need to examine up
to 10 and 11 statements, respectively.
2.2. Problem Formulation

After testing, for an SPL system 𝔖, let 𝑃 = {𝑝1, ..., 𝑝𝑛}be the set of the sampled products. Each product 𝑝𝑖 ∈ 𝑃 is
tested by a corresponding test suite 𝑇𝑖. In general, the system
𝔖 contains variability bugs if and only if 𝑃 is categorized
into two separate non-empty sets based on their overall test
results: the passing products 𝑃𝑃 and the failing products 𝑃𝐹 ,
𝑃𝑃 ∪ 𝑃𝐹 = 𝑃 [6, 13, 14]. Each product in 𝑃𝐹 fails at least
one test, while every product in 𝑃𝑃 passes all the test cases
in its test suite. Among the passing products, a false-passing
product contains bugs and should be a failing product yet has
passed all the tests because of its ineffective test suite.
Definition 1. False-passing product. Given a tested prod-
uct 𝑝 ∈ 𝑃 and its test suite 𝑇 , product 𝑝 is a false-passing
product if the following conditions are satisfied:

1. There exists a statement 𝑠 in 𝑝, such that 𝑠 can cause
failures for 𝑝

2. Product 𝑝 passed all the test cases in 𝑇

In other words, for false-passing product 𝑝, the current test
suite 𝑇 of 𝑝 is ineffective in detecting bugs in 𝑝, thus 𝑝 has
not failed any test in 𝑇 . Additionally, there exists a test suite
𝑇 ′ ≠ 𝑇 such that 𝑝 could fail at least a test in 𝑇 ′. In this case,
𝑇 ′ is more bug-detecting effective than 𝑇 , and the test results

𝑡1 𝑡2 𝑡3 𝑡4
𝑠1 1 0 1 1
𝑠2 1 1 0 0
𝑠3 0 1 0 1
𝑒 1 1 1 0

Figure 1: Spectrum of a product with 3 statements and 4 tests

of 𝑇 ′ is more reliable than that of 𝑇 . On the opposite side,
true-passing products in a tested buggy SPL system can be
formally defined as follows.
Definition 2. True-passing product. Given a tested prod-
uct 𝑝 whose test suite is 𝑇 , 𝑝 is a true-passing product if:

1. There does not exist a statement 𝑠 in 𝑝, such that 𝑠 can
cause the failures for 𝑝

2. As a result, product 𝑝 passed all the test cases in 𝑇

The testing information of a product is recorded in its
program spectrum [7]. A program spectrum is a collection of
execution information of the program. It provides a specific
view on the dynamic behaviors of the software. For a product
which has 𝑛 statements and 𝑚 test cases, its spectrum con-
stitutes a 𝑛×𝑚 matrix. For each test, the product’s execution
is recorded by the column vector in the matrix.

Figure 1 shows the spectrum of a product with 3 state-
ments and 4 tests. Specifically, vector 𝑒 = ⟨1, 1, 1, 0⟩ indi-
cates the outcome of the test cases, where 𝑒[1] = 1 means
that test 𝑡1 passed, and 𝑒[4] = 0 indicates that test 𝑡4 failed.
Vector 𝑣4 = ⟨1, 0, 1⟩ represents the dynamic behavior of the
product with the failed test 𝑡4. As 𝑠1 and 𝑠3 are executed by
𝑡4, 𝑣4[𝑠1] = 1 and 𝑣4[𝑠3] = 1. Meanwhile, 𝑠2 is not covered
by this test, and 𝑣4[𝑠2] = 0.
Definition 3. False-passing product detection. Given 4-
tuple ⟨𝔖, 𝑃 ,  ,⟩, where:

• 𝔖 is a tested SPL system containing variability bugs.
• 𝑃 = {𝑝1, ..., 𝑝𝑛} is the set of 𝑛 sampled products,

𝑃 = 𝑃𝑃 ∪𝑃𝐹 , where 𝑃𝑃 and 𝑃𝐹 are the sets of passing
and failing products of 𝔖.

•  = {𝑇1, ..., 𝑇𝑛} is a set of test suites, where ∀𝑖 ∈
[1, 𝑛], 𝑇𝑖 ∈  is the test suite of 𝑝𝑖 ∈ 𝑃 .

•  = {𝑉1, ..., 𝑉𝑛} is the set of the program spectra,
where ∀𝑖 ∈ [1, 𝑛], 𝑉𝑖 ∈  is the program spectrum
of 𝑝𝑖 with the test suite 𝑇𝑖 ∈  .

False-passing product detection is to output the set of the
false-passing products in 𝑃𝑃 .

As shown in Sec. 2.1, detecting false-passing products
could help significantly improve the performance of FL tech-
niques. However, false-passing products could be very chal-
lenging to be detected. Indeed, false-passing phenomenon
is caused by the ineffectiveness of testing, thus the bugs
in the (false-passing) products are not revealed. To identify
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Figure 2: Clap’s overview

whether or not a passing product is false-passing, new test
cases can be generated to further test the product. In practice,
it could be prohibitively expensive to test all the product’s
behaviors. Furthermore, although a large number of tests
are added, if the product still passes all the newly generated
test cases, it still is not able to confirm the product is
false-passing or true-passing. Moreover, another approach
in detecting false-passing products is to figure out whether
the passing products contain the bugs. However, the bugs,
which cause failures in the system, have not been identified
yet at that point. This means identifying the presence of bugs
in the passing products is also problematic. Hence, false-
passing product detection is necessary but challenging.

3. False-passing Product Detection
As a false-passing product is a product containing bugs

but still passed all its test cases, its overall test result, i.e.,
being a passing product, is unreliable. Hence, determining if
a passing product is false-passing can be done by examining:
(1) whether or not the product contains any bug and (2) the
reliability of the state of passing all its test cases.

In general, a product is considered to contain a bug if
it contains a buggy statement and the statement’s bugginess
can be propagated to product’s incorrect output(s). To ex-
pose the incorrectness, the buggy statement rarely executes
solo, it often executes together with the other statements.
Such statements are called bug-involving statements. Thus,
to determine whether the bug is contained in the product, we
examine whether the product contains both the buggy state-
ment and the corresponding set of bug-involving statements.

If a product contains bugs, yet passes all its tests, its
test suite could be inadequate [8] and ineffective [9, 10] in
exploring the bug(s) in the product. Its test suite is in low
coverage of the product’s behaviors and could not cover the
the unexpected ones. Consequently, the product still passed
all its test cases and is misleadingly considered as a passing
product. Intuitively, the more inadequate and ineffective the
test suite, the less reliable the product’s overall test result.
Hence, to verify the reliability of the product’s overall test

result, it is essential to examine the adequacy and effective-
ness of the product’s test suite.

In practice, a buggy system could contain multiple bugs,
and not all of the bugs are revealed after testing the sampled
products. In this work, we focus on detecting false-passing
products regarding the bugs which have been revealed by
the failed tests in the failing products of the system. The
other passing products, which can not be failed by any of
these revealed bugs, are considered as true-passing products.
Intuitively, for a set of sampled products of the system, the
program and the tests of the failing products can provide
the indications to examine the passing ones. The failure
indications in the failing products are investigated in terms
of product implementation (i.e., the existence of buggy state-
ments and bug-involving statements) and test quality (i.e.,
test adequacy and test effectiveness). Next, determining if a
passing product is false-passing can be done by measuring
the strength of these indications in the product.

To evaluate the strength of the failure indications in a
passing product, we propose a set of measurable attributes.
For product implementation, we measure the possibility that
the product contains buggy statements and corresponding
sets of bug-involving statements (Sec. 3.1). The test quality
is examined in terms of test adequacy and test effectiveness.
For test adequacy, we measure to what extent the suite cov-
ers product’s elements (Sec 3.2). For test effectiveness, we
examine how each test case verifies the product’s behaviors
(Sec. 3.3). Overall, if a passing product has a high possibility
of containing bug(s) and has a low-quality test suite, the
product is more likely to be false-passing. The overview of
our approach is shown in Figure 2.

To verify our selection of the proposed attributes in
detecting false-passing products, we conduct experiments on
159 buggy versions of BankAccountTP (so-called verifica-
tion dataset). Overall, there are 1,626 failing products, 1,763
true-passing products, and 2,017 false-passing products.
The construction of this dataset is described in detail in
Sec. 5.2. We measure each attribute’s value in each product
to confirm that the attribute can distinguish the true-passing
and false-passing products.
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3.1. Suspiciousness of Product Implementation
To evaluate the failure indications in a passing product 𝑝

of the buggy system 𝔖 regarding the product’s implementa-
tion, we investigate the possibility that 𝑝 contains the buggy
statements which caused the failures in the failing products
of 𝔖. Additionally, the likelihood that 𝑝 has the statements
which involve contributing and propagating the incorrect-
ness of the buggy statements (bug-involving statements) is
also evaluated while examining the implementation of 𝑝.
3.1.1. How possibly does a product contain buggy

statements?
For a passing product 𝑝, we estimate the possibility that

𝑝 contains buggy statements by preliminarily measuring the
suspiciousness of the statements in 𝑝. Intuitively, if state-
ments in 𝑝 are highly suspicious, 𝑝 will be more likely to
contain the buggy statements. The possibility that 𝑝 contains
buggy statements, 𝑏𝑠𝑐𝑝(𝑝), can be estimated by the total
suspicious scores of the statements in that product:

𝑏𝑠𝑐𝑝(𝑝) = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒
(

∑

𝑠∈𝑆𝑝

𝜙(𝑠, 𝑃𝐹 ,𝑀)
)

where 𝑆𝑝 = {𝑠1, ..., 𝑠𝑛} is the set of statements of product 𝑝,
and 𝜙(𝑠, 𝑃𝐹 ,𝑀) is the function measuring the suspicious-
ness score of statement 𝑠 by using the testing information of
the failing products in 𝑃𝐹 and the FL technique 𝑀 . Also,
𝑏𝑠𝑐𝑝(𝑝) is normalized into the range of [0, 1].

In 𝑏𝑠𝑐𝑝(𝑝), any FL technique, which can calculate the
suspicious score of a statement in an SPL system, can be
applied as 𝑀 in function 𝜙. In this work, we use the testing
information of only failing products 𝑃𝐹 , whose overall test
results are reliable at this point, to measure the suspicious-
ness of the statements. However, to avoid missing the useful
information provided by test results of the passing products,
one can use all the sampled products 𝑃 in the statement
suspiciousness evaluation function, 𝜙.

Figure 3 shows the possibility that passing products con-
tain buggy statements in our verification dataset. For each
buggy version, we preliminarily measure the suspiciousness
of the statements by using SBFL with Op2 on the program
spectra of the failing products (function 𝜙). As seen, 80%
of the true-passing products have the bug-containing pos-
sibility less than 0.2. Meanwhile, more than 50% of the
false-passing products have this possibility greater than 0.8.
This illustrates that the false-passing products often contain
a large number of highly suspicious statements. Thus, the
higher bug-containing possibility of a passing product is, the
more likely it is a false-passing product.
3.1.2. How possibly does a product have bug-involving

statements?
Bug-involving statements of a buggy statement 𝑠 are the

statements, which impact/be impacted by 𝑠. These state-
ments must be executed together with 𝑠 to expose the incor-
rectness of 𝑠 to the outputs. To compute the possibility that
a passing product 𝑝 contains bug-involving statements of 𝑠,
we measure how similarly 𝑠 impacting/being impacted in 𝑝
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Figure 3: The presence of the incorrect statements in the
passing products

and a failing product 𝑝′ containing 𝑠. Intuitively, the more
similarly 𝑠 impacting/being impacted in 𝑝 and 𝑝′, the more
similarly 𝑠 behaves in these two products. As a result, the
higher possibility that 𝑠 can cause failures in 𝑝 in a similar
way 𝑠 has caused the failures in 𝑝′. This means that 𝑝 is more
likely to be a false-passing product.

Meanwhile, the buggy statements have not been found
yet at this point. To estimate the possibility that a pass-
ing product 𝑝 contains bug-involving statements, we use
suspicious statements and their impacting/being impacted
statements. The suspicious statements are the statements
executed by at least a failed test in a failing product. The
statements impacting/being impacted by a suspicious state-
ment are suspiciously to be bug-involving statements, so
called suspiciously-involving statements.

Let  = {𝑠1, ..., 𝑠𝑘} be the set of suspicious statements
of the given SPL system. For a statement 𝑠 ∈  , let 𝐵 and 𝐵′

be the sets of impacting statements which impact 𝑠 in 𝑝 and
in a failing product 𝑝′, respectively. Also, 𝐹 and 𝐹 ′ are the
sets of being-impacted statements which are impacted by 𝑠 in
𝑝 and 𝑝′. The similarity of the sets of suspiciously-involving
statements of 𝑠 in 𝑝 and 𝑝′ is measured as the similarities
of its impacting statements(𝐵 and 𝐵′) and being impacted
statements (𝐹 and 𝐹 ′) in these two products:

𝑖𝑛𝑣𝑜𝑙_𝑠𝑖𝑚(𝑠, 𝑝, 𝑝′) = |{𝐵 ∩ 𝐵′} ∪ {𝐹 ∩ 𝐹 ′}|
|𝐵 ∪ 𝐹 ∪ 𝐵′ ∪ 𝐹 ′

|

The suspicious-involvement score of statement 𝑠 in 𝑝 is
the maximum of the similarity of the suspiciously-involving
statement set of 𝑠 in 𝑝 to these sets of 𝑠 in the failing products:

𝑠𝑖𝑠(𝑠, 𝑝) = max
𝑝′∈𝑃𝐹

𝑖𝑛𝑣𝑜𝑙_𝑠𝑖𝑚(𝑠, 𝑝, 𝑝′)

The reason for the use of the max function is that we would
like to consider the most similarly 𝑠 behaves in 𝑝 compared
to the other failing products of the system. Intuitively, if 𝑝
contains more suspiciously-involving statement sets which
are more similar to such sets in the failing products, 𝑝 is more
likely to be false-passing. The estimated possibility that 𝑝
contains bug-involving statements is aggregated from the
suspicious-involvement scores of all suspicious statements:

𝑖𝑛𝑣𝑜𝑙(𝑝) =
∑

𝑠𝑖∈
𝑠𝑖𝑠(𝑠𝑖, 𝑝)
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Figure 4: The presence of bug-infected statements in the
passing products

Figure 4 shows the suspicious-involvement scores of
the passing products in the verification dataset. As seen,
85% of the true-passing products have scores less than 0.2.
Meanwhile, about 90% of the false-passing products have
scores greater than 0.2. Specially, the scores of about 40%
of false-passing products are in the top range, i.e., [0.8-1.0].
It shows that in the false-passing products, suspicious state-
ments frequently impact/be impacted by the other statements
in the similar way they do in the failing products.
3.2. Test Adequacy

In general, assuring the quality of a program requires
an adequate test suite which can cover a large number of
the program’s elements such as statements, branches, or
paths [8]. If a program is tested by an inadequate test suite,
the state of passing all the cases in the test suite could not
be reliable, since a large portion of the program’s elements
is not tested (thoroughly). In practice, there are various
adequacy criteria, and they are all imperfect. However, ad-
equacy criteria are useful indicators for determining the
inadequacy of test suites [8]. For simplicity, we measure the
adequacy of a test suite in statement coverage. Additionally,
to evaluate the fault diagnosability of test suites, we also
apply DDU 1 [15], which is a simple and effective criterion,
as an adequacy attribute of the test suite.
3.2.1. Code coverage

The prerequisite condition for a bug to be revealed in
a product is that the buggy statement is reached (executed)
by a test. Indeed, an adequate test suite should widely cover
the suspicious statements contained in the product. The more
suspicious statements which are not covered by the test suite
of the product, the less reliable the overall passing state of
the product is.

In general, for the given SPL system, any statement
executed by any failed test in a failing product is suspicious
to be a buggy one. Let  = {𝑠1, ..., 𝑠𝑘} be the set of
suspicious statements, and 𝑆𝑝 be the statements of a passing
product 𝑝 ∈ 𝑃𝑃 . The set of suspicious statements in 𝑝 is
𝐾 =  ∩ 𝑆𝑝. Specially, 𝐾 is categorized into two sets, 𝐾𝑒and 𝐾𝑛𝑒, such that 𝐾 = 𝐾𝑒 ∪ 𝐾𝑛𝑒 where 𝐾𝑒 and 𝐾𝑛𝑒 are
the sets of statements which are covered and not covered by
the test suite 𝑇 of 𝑝. The noncoverage rate of 𝑝 reflects the

1DDU is an acronym for Density-Diversity-Uniqueness.
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Figure 5: The portion of suspicious statements in the passing
products which are not covered by their test suites

portion of suspicious statements in 𝑝, yet not covered by 𝑇 :

𝑛𝑜𝑛𝑐𝑜𝑣(𝑝, 𝑇 ) =
|𝐾𝑛𝑒|

|𝐾|

Figure 5 shows this code coverage attribute of the pass-
ing products in the verification dataset. In fact, the general
statement coverage of the test suites of our experimental
data is quite high. This means that almost the statements
in each product are covered by the test suite, and very few
number statements in the product are not covered. That is the
reason why in Figure 5 most of the products (both the true-
passing and false-passing products) have small portions of
non-coverage. However, this attribute is still useful to detect
false-passing products, since various false-passing products
have higher noncoverage rates than the others. As seen,
100% of the true-passing products have the noncoverage
rates lower than 0.2, while the noncoverage rates of 40%
false-passing products are greater than this number. This
result shows that the test suites of the false-passing products
usually do not cover their suspicious statements. Meanwhile,
the test suites of the true-passing products often have better
coverage of the suspicious statements.
3.2.2. Density-Diversity-Uniqueness

Besides code coverage information, to thoroughly evalu-
ate the test suite, we take into account DDU metric proposed
by Perez et al. [15] to evaluate the adequacy of the test suite
regarding fault diagnosability. While the coverage attribute
abstracts the execution information of test executions to
favor an overall assessment of the suite, DDU takes into
account per-test execution information, so it provides further
insight about each test case of the suite.

The main idea of DDU is that a high-quality test suite
must contain the test cases such that program elements
are frequently tested (density) in diverse combinations (di-
versity), as well as the corresponding execution vectors of
the elements in the program spectrum are distinguishable
(uniqueness) [15]. The DDU value is from 0.0 to 1.0, and
the DDU of an ideal test suite of a product is 1.0. Thus,
the product whose test suite with a lower fault diagnosabil-
ity in DDU is more likely to be false-passing. Specially,
for a product 𝑝, the “undiagnosablity” of its test suite is
𝐷𝐷𝑈 ′(𝑝, 𝑇 ) = 1 − 𝐷𝐷𝑈 (𝑝, 𝑇 ) where 𝐷𝐷𝑈 (𝑝, 𝑇 ) is the
DDU value of the test suite 𝑇 of product 𝑝. As a result,
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Figure 6: The undiagnosability (DDU’) of the passing prod-
ucts’ test suites

the higher 𝐷𝐷𝑈 ′(𝑝, 𝑇 ), the lower-quality test suite, and 𝑝
is more likely to be a false-passing product.

Figure 6 shows 𝐷𝐷𝑈 ′ of the passing products in the ver-
ification dataset. There are about 90% of the false-passing
products have DDU’ in the range of [0.8, 1], while 60% of the
true-passing products have DDU’ in the lower range. This
shows that the true-passing products have more diagnosable
test suites, so their states of passing all the tests are more
reliable. With the less diagnosable test suites, the overall test
results of the false-passing products are less reliable.

In practice, there are multiple criteria to evaluate the ad-
equacy of the test suites, such as branch coverage, path cov-
erage, mutation score, etc. These criteria could be applied
using the same principle. Although sophisticated criteria
could provide a more comprehensive adequacy evaluation,
the computation could be expensive. For example, mutation
score is a popular and powerful metric to evaluate the test
suite. However, to calculate the mutation score, a large
number of mutants need to be tested against the original test
suite. This could be costly and time-consuming, especially
for the large and complex systems containing many sampled
products with large test suites [16, 17, 18]. Thus, to ensure
the efficiency of the proposed attributes measuring the test
suite’s adequacy, we employ statement coverage and DDU.
Their effectiveness has been demonstrated by our evaluation
by the verification dataset and the overall performance of
CLAP shown in Sec. 6.
3.3. Test Effectiveness

For a product 𝑝, the fault-detecting effectiveness of its
test suite 𝑇 shows how intensively it tests the product’s
behaviors and its ability to explore the product’s incorrect-
ness [9, 10]. To evaluate the effectiveness of the test suite 𝑇 ,
we aim to investigate 𝑇 by two attributes: incorrectness veri-
fiability and correctness reflectability. For a passing product
𝑝, incorrectness verifiability attribute measures how 𝑝’s test
suite, 𝑇 , covers the product’s suspicious behaviors. Mean-
while, correctness reflectability indicates that the passed
tests of the product really reflect its correct behaviors (i.e.,
these tests are not just coincidentally passed).

Note that, the test adequacy attributes focus on how and
to what extent the product’s elements are covered by the test
suite. These attributes do not take into account the results
of the test cases. Meanwhile, the test effectiveness attributes
focus on how the suite verifies the product’s behaviors. Not

only the product’s elements but also the results of the tests
are considered in the evaluation process.

In practice, the behaviors of the products are dynamically
considered regarding the execution vectors in the product’s
spectrum. The vector for a failed test represents an incorrect
behavior of the product, so-called incorrect behavior vector.
In a buggy system, the incorrect behaviors are represented
by the incorrect behavior vectors in the failing products.
These vectors record the executions of the failing products
in the failed tests. Meanwhile, the correct behaviors are
represented by executions of truly passed tests which are not
just coincidentally passed. Thus, in this work, we leverage
execution vectors in spectra to measure incorrectness verifi-
ability and correctness reflectability.
3.3.1. Incorrectness verifiability

From the incorrect behaviors of the failing products 𝑃𝐹of the given system 𝔖, we identify the behaviors which are
suspiciously contained in a passing product 𝑝 ∈ 𝑃𝑝 and
then evaluate whether these behaviors are covered by the test
cases of 𝑝. Intuitively, if 𝑝 contains suspicious behaviors,
these behaviors should be verified by test cases in its test
suite, 𝑇 , to sufficiently ensure the correctness of the product.
To evaluate the reliability of the state of being a passing
product of 𝑝 with its test suite 𝑇 , we measure the number
of incorrect behaviors are (1) potentially contained in 𝑝
and (2) not covered by the test cases in 𝑇 . Intuitively, the
correctness of 𝑝 is less reliable if 𝑝 potentially contains more
such incorrect behaviors.

For (1), an incorrect behavior expressed by the execution
vector 𝑣 is potentially contained in 𝑝 if 𝑝 contains a large
portion of the executed statements in 𝑣. This portion should
be larger than a threshold 𝐼1. The reason is that the
products of an SPL system are composed of different sets of
features, a product rarely contains a set of statements which
is exactly the same as an execution of a test in another.

For (2), the behavior expressed by 𝑣 is not covered by
the test in 𝑝 if 𝑣 is not similar to any execution vector in 𝑝’s
spectrum. Similar to (1), two execution vectors are similar
if they share a large portion executed statements and this
portion should be greater than a threshold 𝐼2.

For (1), let 𝐕𝐼𝐵 = {𝑣𝑓1, ..., 𝑣𝑓𝑛} be the set of all the
incorrect behavior vectors of the failing products 𝑃𝐹 . Also,
let 𝑆𝑝 be the set of statements of the passing product 𝑝, and
𝑉𝑝 = {𝑣1, ..., 𝑣𝑚} be the set of the execution vectors in 𝑝’s
spectrum. 𝑝 potentially contains a behavior presented by an
incorrect behavior vector, 𝑣𝑓𝑖 ∈ 𝐕𝐼𝐵 , if 𝑆𝑝 contains a large
portion of the statements executed in that vector:

|{𝑠 ∈ 𝑣𝑓𝑖|𝑣𝑓𝑖[𝑠] = 1 ∧ 𝑠 ∈ 𝑆𝑝}|
|{𝑠 ∈ 𝑣𝑓𝑖|𝑣𝑓𝑖[𝑠] = 1}|

≥ 𝐼1

For (2), the behavior expressed by 𝑣𝑓𝑖 is covered by the
test cases in 𝑇 if there exists an execution vector recorded
in 𝑝’s spectrum similar to 𝑣𝑓𝑖. To calculate the similarity
of two vectors, we adapt Jaccard similarity formulation. An
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Figure 7: The incorrectness verification capability of the
passing products’ test suites

execution vector 𝑣𝑗 ∈ 𝑉𝑝 is similar to 𝑣𝑓𝑖 if:

𝑠𝑖𝑚(𝑣𝑗 , 𝑣𝑓𝑖) =
𝑎

𝑎 + 𝑏 + 𝑐
≥ 𝐼2

where 𝑎 is the number of statements that executed in both
𝑣𝑗 and 𝑣𝑓𝑖, 𝑎 = |{𝑠 ∈ 𝑣𝑗|𝑣𝑗[𝑠] = 1 ∧ 𝑣𝑓𝑖[𝑠] = 1}|. 𝑏
is the number of statements executed in 𝑣𝑗 but not in 𝑣𝑓𝑖,
𝑏 = |{𝑠 ∈ 𝑣𝑗|𝑣𝑗[𝑠] = 1 ∧ 𝑣𝑓𝑖[𝑠] = 0}|. Meanwhile, 𝑐 is
the number of statements which are not executed in 𝑣𝑗 but
executed in 𝑣𝑓𝑖, 𝑐 = |{𝑠 ∈ 𝑣𝑗|𝑣𝑗[𝑠] = 0 ∧ 𝑣𝑓𝑖[𝑠] = 1}|.

The incorrectness verifiability score of the product 𝑝
is calculated as the portion of the incorrect behaviors po-
tentially contained by 𝑝 but not covered by any test in the
product’s test suite 𝑇 . Let 𝐼1 be the set of incorrect behaviors
vectors whose executed statements are contained in 𝑝. Also,
let 𝐼2 be the set of incorrect behaviors vectors in 𝐼1 and not
similar to any execution vector in the spectrum of 𝑝. The
incorrectness verifiability attribute is measured as:

𝑖𝑣(𝑝, 𝑇 ) =
|𝐼2|
|𝐼1|

Figure 7 shows the portion of the incorrect behaviors
suspiciously contained in the passing products in the verifi-
cation dataset, yet not tested by the products’ test suites. As
seen, in most of the true-passing products, the suspicious be-
haviors are covered by at least a test in their suites. However,
two-thirds of the false-passing products contain suspicious
behaviors, and these behaviors are not tested by the products’
tests. This shows that the false-passing products’ test suites
are often ineffective in verifying their suspicious behaviors.
3.3.2. Correctness reflectability

In practice, not all of the passed tests can reliably confirm
the success of the program since they could be coincidentally
correct. Also, coincidentally passed tests are unbefitting for
verifying the correctness of the product [2]. To determine if
the correctness of a product is reliably reflected by its passed
tests, we measure the portion of passed tests of 𝑝 which
are likely to be truly correct. The more truly passed tests,
the more effective 𝑝’s test suite. Intuitively, with fewer truly
passed tests, 𝑝 has a higher possibility to be false-passing.

For a passing product 𝑝, a passed test in 𝑝 can truly
represent a correct behavior if its execution vector is similar
to any truly passed test’s execution vector of any failing
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Figure 8: The correctness presentation capability of the passing
products’ test suites

product of the system. In a failing product, a test whose
execution vector is not similar to the execution vector of
a failed test can be considered as a truly passed test. This
is because these tests are less likely to execute the faults
revealed in the failed tests. Meanwhile, a passed test whose
execution vectors are similar to the execution vector of a
failed test, could be coincidentally passed. The reason is
that with the similar execution vector but only one of them
can reveal the bugs, then the other could reach the buggy
statements but is ineffective in exposing the bugginess.

Given an SPL system 𝔖, let 𝐕𝐼𝐵 = {𝑣𝑓1, ..., 𝑣𝑓𝑛} and
𝐕𝐶𝐵 = {𝑣𝑝1, ..., 𝑣𝑝𝑚} be the sets of incorrect and correct be-
haviors of the failing products. In other words, 𝐕𝐼𝐵 and 𝐕𝐶𝐵are sets of execution vectors of the failed tests and passed
tests in the failing products of system 𝔖. A passed test in a
failing product whose execution vector 𝑣𝑝𝑖 ∈ 𝐕𝐶𝐵 , is truly
passed if its execution vector is not similar to any failed test’s
execution vector, formally, ∄𝑣𝑓𝑗 ∈ 𝐕𝐼𝐵 , 𝑠𝑖𝑚(𝑣𝑝𝑖, 𝑣𝑓𝑗) ≥
𝐶 , where 𝐶 is a similarity threshold.

Let 𝑉𝑝 = {𝑣1, ..., 𝑣𝑘} be the set of execution vectors of
of passing product 𝑝 with its test suite 𝑇 . The correctness
reflected by a passed test in 𝑇 , whose execution vector
𝑣𝑖 ∈ 𝑉𝑝, is confirmed if 𝑣𝑖 is similar to a truly correct
test’s execution vector in the failing products. Specifically,
∃𝑣𝑝𝑗 ∈ 𝐕𝐶𝐵 , ∄𝑣𝑓𝑡 ∈ 𝐕𝐼𝐵 , 𝑠𝑖𝑚(𝑣𝑝𝑗 , 𝑣𝑓𝑡) ≥ 𝐶 , and
𝑠𝑖𝑚(𝑣𝑝𝑗 , 𝑣𝑖) ≥ 𝐶 .

Let 𝐶 be the number of truly correct tests of 𝑝, the
correctness reflectability value of a passing product 𝑝 is:

𝑐𝑟(𝑝, 𝑇 ) = 1 − 𝐶
|𝑉𝑝|

The correctness reflectability value is 0 when all the passed
tests of the passing product 𝑝 are confirmed by truly correct
tests of the failing products. This value is 1 when none of the
tests reflecting the correctness of 𝑝 is confirmed.

Figure 8 shows the correctness reflectability of the pass-
ing products in the verification dataset. The figures of this
attribute of all the true-passing products are in the lowest
range, i.e., [0, 0.2). This means that the correctness reflected
by almost passed tests in the true-passing products is con-
firmed by at least a truly passed test of a failing product.
Meanwhile, more than 70% of the false-passing products
contain passed tests, but the correctness reflected by their
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passed tests could not be confirmed. This indicates the false-
passing products often contain passed tests, yet many of
them could not represent the products’ true correctness.
3.4. Detecting False-passing Products

In this work, we consider the problem of false-passing
product detection as a binary classification problem. Specif-
ically, the possibility that a product 𝑝 is false-passing is
measured by the proposed attributes regarding product’s
implementation and its test quality. Product 𝑝 is represented
by a six-dimension vector 𝑥 = ⟨𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6⟩, where
𝑎1 = 𝑏𝑠𝑐𝑝(𝑝) and 𝑎2 = 𝑖𝑛𝑣𝑜𝑙(𝑝) reflect whether the
product’s implementation contains buggy statements and
the corresponding bug-involving statements. The remaining
attributes reflect its test quality, 𝑎3 = 𝑛𝑜𝑛𝑐𝑜𝑣(𝑝, 𝑇 ) and 𝑎4 =
𝐷𝐷𝑈 ′(𝑝, 𝑇 ) are about test adequacy, while 𝑎5 = 𝑖𝑣(𝑝, 𝑇 ),
and 𝑎6 = 𝑐𝑟(𝑝, 𝑇 ) are about test effectiveness. For each
attribute, the higher score, the more likely 𝑝 is false-passing.

A classifier ℎ(𝑥) could be applied to predict the possibil-
ity that product presented by vector 𝑥 is a false-passing prod-
uct. The label 𝑦 of the product is false-passing if the result
of function ℎ(𝑥) is greater than a threshold 𝑓𝑝, otherwise,
it is a true-passing product. In this work, we use the default
threshold, 𝑓𝑝 = 0.5, however, one can further consider
Precision-Recall curve to trade-off between precision and
recall and select the optimal decision threshold.

𝑦 =

{

false-passing if ℎ(𝑥) ≥ 𝑓𝑝
true-passing 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

4. Mitigation of Negative Impact of
False-passing Products on Variability FL
As the negative impact on variability fault localiza-

tion (FL) is caused by false-passing products’ unreliable
test results, there are two main directions to mitigate their
negative impacts. Specifically, we can either improve the
reliability or eliminate the unreliability in the test results
of these products. Firstly, the reliability of test results can
be improved by enhancing the quality of the test suites of
the false-passing products. Secondly, the unreliability of
test results can be eliminated by removing products whose
unreliable test results and/or removing low-quality test cases.

First, the FL performance can be boosted by improving
the reliability of the false-passing products’ test results.
Specifically, the false-passing products can be more thor-
oughly tested by a better test suite to explore their bugginess.
Once their bugs are revealed by test cases, we not only
have more information about the faults but also have better
assessments of the (overall) test results of the products. This
could help improve variability FL performance.

In particular, the failure indications (e.g., suspicious
statements and behaviors) can be used to guide test gen-
erators to produce better test suites for these false-passing
products. Specially, the newly generated test cases should
focus on these failure indications. For instance, to have a
more adequate test suite, new test cases can be added to cover

the suspicious statements which have not been covered yet
(Sec. 3.2.1). To improve the test effectiveness, new test cases
could be added to verify whether the suspicious behaviors
can cause failures for the false-passing products (Sec. 3.3.1).

Second, the performance of FL techniques can also be
enhanced by eliminating the unreliability in the test results of
the false-passing products. In particular, the unreliable test
results can be at either the product-level or the test case-level.
For the product-level, the test result is the overall test result
(i.e., being failing or passing) of a product. Meanwhile, the
test result at the test case-level is the result (i.e., failed or
passed) of every single test case.

For the product-level, we can remove all the detected
false-passing products before localizing variability faults.
This strategy reduces the number of buggy products, yet
incorrectly considered as passing ones. Thus, it can benefit
the product-base assessment FL techniques [6, 5] which
evaluate the suspiciousness of the statements according to
the number of failing and/or passing products.

For the test case-level, the coincidentally passed tests
should be removed. The reason is that the coincidentally
passed tests improperly increase the number of passed tests
executed by the buggy statements [2]. As a result, these test
cases can negatively impact the performance of test case-
based assessment FL approaches [6, 7] which evaluate the
statements’ suspiciousness based on the number of failed
and/or passed tests. To clean such tests, each passed test of
a product should be carefully investigated.

In summary, this section discusses the directions to miti-
gate false-passing products’ impact on FL techniques. In this
work, we evaluate the effectiveness of two methods: adding
new tests to improve the product’s test quality and elimi-
nating the unreliability at the product-level. The mitigation
direction eliminating coincidentally passed tests required
thorough investigation to carefully review and eliminate
unreliable tests. The techniques in this direction are beyond
the scope of our work and left for future work.

5. Empirical Methodology
5.1. Research Questions

To evaluate CLAP in detecting false-passing products
and mitigating their negative impacts on fault localization,
we seek to answer the following research questions:
RQ1: Accuracy Analysis: How accurate is CLAP in detect-
ing false-passing products?
RQ2: Mitigating Impact of False-passing Products on
Fault Localization: How does CLAP mitigate the negative
impact of false-passing products on the performance of
state-of-the-art FL techniques including VARCOP [6] and
SBFL [19, 20]?
RQ3. Sensitivity Analysis: How does CLAP perform on
different evaluation scenarios? And how do different training
data sizes impact CLAP’s performance?
RQ4. Intrinsic Analysis: How do the different attributes
of CLAP contribute to the false-passing product detection
performance?
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Table 2
Products’ test suites before and after being transformed

System #Transformed
products

Original test suite T New test suite T’
#Tests Cov (%) #Tests Cov (%)

BankAccountTP 1,833 22 96.7 19 92.8
Elevator 161 165 76.5 120 69.4
Email 420 94 97.2 89 96.0
ExamDB 126 136 96.6 128 96.4
GPL 6,091 90 98.7 88 98.2
ZipMe 541 253 42.9 249 42.7

#Tests and Cov stand for the number of tests and statement coverage in a product.

RQ5. Time Complexity: What is CLAP’s running time?
5.2. Dataset

To evaluate CLAP, we systematically collect failing,
true-passing, and false-passing products in existing buggy
SPL systems as follows.

First, to practically collect false-passing products, we
transform a random number of failing products in a buggy
SPL system into passing products by removing all their
failed tests. Indeed, for a failing product 𝑝 with the original
test suite 𝑇 , removing all the failed tests in 𝑇 creates a new
test suite 𝑇 ′. Product 𝑝 with the test suite 𝑇 ′ is false-passing
since 𝑝 fails with 𝑇 , but not with 𝑇 ′. The average number of
tests in the original test suite 𝑇 and the new test suite 𝑇 ′, as
well as the corresponding statement coverage of the products
in each system are shown in Table 2.

Although removing failed tests in 𝑇 slightly affects the
statement coverage of 𝑝 (i.e., about 2% on average), this data
collecting procedure is independent of our approach. By this
procedure, only failed tests in 𝑇 are removed, and all the
passed tests in the original test suite of 𝑝 are kept unchanged.
Meanwhile, the proposed attributes of CLAP measure how
likely 𝑝 is a false-passing product by investigating its imple-
mentations and its passed tests.

Second, to collect true-passing products, we verify the
overall test results of the passing products and label them.
In practice, this process could be very tedious and time-
consuming even for experts. To practically verify the overall
test result of a passing product 𝑝′, we propose a semi-
automated procedure generating the tests and making the
product fail in three steps. If 𝑝′ fails any test in each step,
then 𝑝′ with its original test suite is a false-passing one.
Otherwise, it can be considered as a true-passing product.

Step 1. Automatically generating new test cases for
𝑝′. We used multiple test generation tools including Evo-
suite [21] and Randoop [22], to generate new tests for 𝑝′. If
the product is failed by any added test, the product with the
original test suite is a false-passing product. If the product
still passes all the added tests, we move to the next step.

Step 2. Applying a hybrid test generator. The bugs of
the system have been explored by failed tests of the failing
products. Thus, these failed tests can be used as the guidance
to verify the existence of the bugs in 𝑝′. Specifically, we
tried to adapt failed tests of the failing products to test 𝑝′.
In addition, for an SPL system, each product is composed
from different set of features, thus tests need to be adapted

appropriately according to each product, and not all of the
failed tests can be adapted to test another products. If any
adapted test can be executed by 𝑝′ and 𝑝′ creates incorrect
output, 𝑝′ with the original test suite is a false-passing
product. Otherwise, we move to the next step.

Step 3. Manually investigating the product. 𝑝′ is manu-
ally investigated and generated tests to carefully confirm its
correctness or bugginess. If 𝑝′ fails any newly generated test,
𝑝′ with the original test suite is false-passing. Otherwise, if
the product still passes all the manually generated tests, 𝑝′
with the original test suite is a true-passing product.

In this work, we applied the procedure on the sampled
products of the buggy systems in the dataset of vulnerability
bugs collected by Ngo et al. [11]. This dataset includes
1,570 buggy versions with their sampled products and the
corresponding test suites of six Java SPL systems which are
widely used in SPL studies. After labeling, there are 823
buggy versions which contains large numbers of products
in all three kinds: failing, true-passing, and false-passing
products. All the other buggy versions which are not satisfied
are removed. Table 3 shows the overview of the dataset.
5.3. Empirical Procedure

Accuracy Analysis. We split 823 buggy versions into
five folds (5-fold cross-validation). Specifically, four folds
are picked for training and one remaining fold is used for
testing. We adapted cross-validation to aggregate average
results for the final assessment.

Mitigating Impact of False-passing Products on Fault
Localization. We used the buggy versions in five systems
to train the false-passing product detection model, and then
the trained model was used to detect false-passing products
in the buggy versions of the remaining system. Next, we
evaluated the effectiveness of our mitigation techniques on
FL performance. The original FL performance is measured
using all the sampled products and their corresponding
testing information. The performance after applying our
mitigation techniques: (1) removing all the detected false-
passing products, only using the sampled products which are
not predicted to be false-passing and their testing informa-
tion (removing FPs); (2) generating new tests for detected
false-passing products for further testing, then if the faults
are revealed (i.e., at least one added tests is failed), these
products are used with the other products which are not
predicted to be false-passing to localize faults (adding tests).

Sensitivity Analysis. We conducted two experiments to
measure the impact of different evaluation scenarios and
training data sizes.

First, we posit that different systems, buggy versions of a
system, and products in a version have different degrees of
relevance. Hence, to evaluate the impact of the specialities
of systems, buggy versions, and products on CLAP, we
conducted the following experiment scenarios.

• System-based edition. CLAP is trained with the prod-
ucts in buggy versions of five systems, and the prod-
ucts in the buggy versions of the remaining system
are used for testing. In practice, this setting reflects
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Table 3
Dataset overview

System Details Test info Buggy versions Products
#LOC #F #SP #Tests Cov (%) 1-Bug 2-Bug 3-Bug #Fs #FPs #TPs

BankAccountTP 143 8 34 20 97.8 41 117 29 2,055 2,328 1,975
Elevator 854 6 18 166 85.4 14 17 10 217 326 195
Email 439 9 27 86 97.3 14 21 34 553 587 723
ExamDB 513 8 8 133 98.0 10 44 23 201 127 288
GPL 1,944 27 99 87 99.1 97 188 70 6,612 9,995 18,538
ZipMe 3,460 13 25 255 44.4 17 46 31 686 828 836
Total 10,433 14,191 22,555

#F and #SP stand for the number of features and the sample size.
#Tests and Cov stand for the number of tests and statement coverage in a product.
N-Bug represents the number of bugs (i.e., N) in the buggy version.
#Fs, #FPs, and #TPs stand for failing, false-passing , and true-passing products.

the case when the development history of the system
is not very long, and the data about the current sys-
tem is not available/sufficient. Thus, the data of the
other systems are leveraged for detecting false-passing
products in the developing system.

• Version-based edition. We shuffled all the buggy
versions of the six systems and then split these buggy
versions into a training set and a testing set by the ratio
8:2. This scenario comes from the idea when the sys-
tem is developed for a while, and the information from
other systems, as well as the other buggy versions of
the developing system are available for detecting new
false-passing products.

• Product-based edition. We shuffled all the products
in all the buggy versions of the six systems and then
split them into a training set and a testing set by
the ratio 8:2. The idea of this scenario is that dur-
ing assuring systems’ quality, the sampled products
are progressively tested and determined if they are
false-passing. Thus, the detected and confirmed false-
passing products could be used for training and detect-
ing other false-passing products.

• Within-system edition. We conducted an experiment
on the buggy versions of each system. The buggy
versions of a system are split into a training set and
a testing set by the ratio 8:2. This is also another real-
world setting. When the data from other systems is
not available, then only the information from testing
system is used to detect false-passing in the system.

Second, as CLAP is data-driven, we study the impact of
training data sizes on CLAP’s performance. We randomly
picked a system for testing. The training data is gradually
increased by adding data from the remaining systems.

Intrinsic Analysis. To better understand how our ap-
proach works, we study the impact of the proposed attributes
on CLAP’s performance: product implementation, test ade-
quacy, and test effectiveness. We built different variants of
CLAP, which use attributes only in one of these aspects to de-
tect false-passing products, and measure their performance.

5.4. Metrics
We adopt Accuracy, Precision, Recall, and F1-score

which are widely used to evaluate classification model [23].
Let 𝑃𝑇𝑃 and 𝑃𝐹𝑃 be the sets of predicted true-passing and
false-passing products, and 𝐴𝑇𝑃 and 𝐴𝐹𝑃 be the sets of
actual true-passing and false-passing products, respectively.
These metrics are measured as the following formulas.
Acc. Accuracy measures the general performance of the
classification model. Accuracy indicates the ratio of cor-
rectly predicted true-passing and false-passing products out
of the total passing products:

𝐴𝑐𝑐 =
|{𝑃𝑇𝑃 ∩ 𝐴𝑇𝑃 } ∪ {𝑃𝐹𝑃 ∩ 𝐴𝐹𝑃 }|

|𝐴𝑇𝑃 ∪ 𝐴𝐹𝑃 |

Prec. Precision indicates the prediction correctness for true-
passing, 𝑃𝑟𝑒𝑐(𝑇𝑃 ), or false-passing, 𝑃𝑟𝑒𝑐(𝐹𝑃 ):

𝑃𝑟𝑒𝑐(𝑇𝑃 ) =
|𝑃𝑇𝑃 ∩ 𝐴𝑇𝑃 |

|𝑃𝑇𝑃 |

𝑃𝑟𝑒𝑐(𝐹𝑃 ) =
|𝑃𝐹𝑃 ∩ 𝐴𝐹𝑃 |

|𝑃𝐹𝑃 |

Recall. Recall indicates the effectiveness of prediction, the
portion of correctly predicted true-passing (false-passing)
products out of the total number of actual true-passing
(false-passing) products.

𝑅𝑒𝑐𝑎𝑙𝑙(𝑇𝑃 ) =
|𝑃𝑇𝑃 ∩ 𝐴𝑇𝑃 |

|𝐴𝑇𝑃 |

𝑅𝑒𝑐𝑎𝑙𝑙(𝐹𝑃 ) =
|𝑃𝐹𝑃 ∩ 𝐴𝐹𝑃 |

|𝐴𝐹𝑃 |

F1-score. F1-score is defined as the harmonic mean of
precision and recall, it indicates balance between those.

𝐹1(𝑇𝑃 ) = 2 ∗
𝑃𝑟𝑒𝑐(𝑇𝑃 ) × 𝑅𝑒𝑐𝑎𝑙𝑙(𝑇𝑃 )
𝑃𝑟𝑒𝑐(𝑇𝑃 ) + 𝑅𝑒𝑐𝑎𝑙𝑙(𝑇𝑃 )

𝐹1(𝐹𝑃 ) = 2 ∗
𝑃𝑟𝑒𝑐(𝐹𝑃 ) × 𝑅𝑒𝑐𝑎𝑙𝑙(𝐹𝑃 )
𝑃𝑟𝑒𝑐(𝐹𝑃 ) + 𝑅𝑒𝑐𝑎𝑙𝑙(𝐹𝑃 )

To measure FL performance, we employed Rank and EXAM,
which is widely used in the existing FL studies [7, 24].
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Table 4
Accuracy of FP product detection model

Classifier Product Precision Recall F1-Score Accuracy

SVM True-passing 88.16% 97.09% 92.41% 90.04%False-passing 94.19% 78.36% 85.55%

KNN True-passing 90.41% 93.97% 92.16% 90.02%False-passing 89.30% 83.46% 86.28%

Naïve Bayes True-passing 88.36% 95.25% 91.68% 89.21%False-passing 90.95% 79.18% 84.66%

Logistic Regression True-passing 88.75% 95.99% 92.23% 89.91%False-passing 92.30% 79.81% 85.60%

Decision Tree True-passing 90.03% 96.26% 93.04% 91.01%False-passing 92.99% 82.30% 87.32%

Random Forest True-passing 89.81% 95.00% 92.33% 90.16%False-passing 90.83% 82.12% 86.26%

Rank. Rank indicates the position of the buggy statements
in the resulted lists of the FL techniques. The lower rank of
buggy statements, the more effective approach. If there are
multiple statements having the same score, buggy statements
are ranked last among them. For the cases of multiple bugs,
we measured Rank of the first buggy statement (best rank)
in the resulted lists.
EXAM. EXAM [25] is the proportion of the statements
needs to be examined until the first faulty one is reached:

𝐸𝑋𝐴𝑀 = 𝑟
𝑁

× 100%

where 𝑟 is the rank of the buggy statement and 𝑁 is the total
number of statements in the list. The lower EXAM, the better
FL technique.
5.5. Experimental Setup

Classifier selection. We selected six popular classifiers
based on their use in previous and related studies [26, 27].
The classifiers include Support Vector Machine (SVM), K-
Nearest Neighbor (KNN), Naïve Bayes, Logistic Regres-
sion, Decision Tree, and Random Forest.

Experimental setup. We implemented classification
models using Sklearn library. For each classification al-
gorithm, we train the model with the respective standard
settings. Each item in the dataset is a passing product
represented by a 6-dimensional vector whose values are
computed based on six attributes proposed in Sec. 3. The
training and the testing sets in each experiment are separated
by different scenarios as described in Sec. 5.3. All the
experiments are conducted on a desktop with Intel Core i5
2.7GHz, 8GB RAM.

6. Experimental Results
6.1. Accuracy Analysis (RQ1)

As shown in Table 4, CLAP is highly effective in detecting
false-passing products for all the studied classifiers. The av-
erage accuracy for all six classifiers is about 90%. This figure
indicates that CLAP can correctly detect 9 out of 10 products
to be true-passing or false-passing. The average F1-scores
of true-passing and false-passing product detection are also
high, about 92% and 86%, respectively. Furthermore, the

average Recall for false-passing product detection is about
81%. In other words, if there are 10 false-passing products,
8 of them are correctly detected. Meanwhile, this figure for
true-passing product classification is approximately 96%,
which demonstrates that almost true-passing products can
be accurately detected.

Among the studied classifiers, Decision Tree has the
best Accuracy (91.01%). This indicates that Decision Tree
most effectively separates true-passing and false-passing
products in a set of passing products. Meanwhile, SVM
obtains the highest false-passing product detection Precision
and true-passing product classification Recall. This demon-
strates that compared to the other classifiers, although SVM
can detect fewer numbers of false-passing products (the
SVM’s Recall on false-passing product detection is slightly
lower than the other classifiers’ results), it more precisely
predicted false-passing products (its Precision on false-
passing product detection is higher than the others classi-
fiers). At the same time, it also less erroneously detected
true-passing products (higher Recall on true-passing prod-
uct detection). In fact, misleadingly detecting true-passing
products can cause missing useful information in FL proce-
dure and it could negatively affect FL performance. Thus,
for our dataset, SVM is the safest and most suitable for our
approach, and we use SVM for the following experiments.
6.2. Mitigating Impact of False-passing Products

on Fault Localization (RQ2)
Table 5 shows the performance of the state-of-the-art

variability fault localization techniques in three settings, the
original performance and the FL performance after applying
our mitigation methods: removing false-passing products
and adding tests for false-passing products. In this experi-
ment, CLAP used SVM to detect false-passing products.

As shown in Table 5, removing “noises” caused by
false-passing products helps both VARCOP and SBFL obtain
better performance compared to when they are applied on
the original testing information. Specifically, when false-
passing products are detected and removed, the performance
of the VARCOP improved up to 25% in Rank and 19% in
EXAM, also these improvements of SBFL are 8% and 3%,
respectively. Indeed, the presence of false-passing products
could lower the suspicious scores of the incorrect statements.
The reason is that these products not only decrease the ratio
of failing and passing products containing the buggy state-
ments but also decrease the ratio of failed tests and passed
tests executed by these statements. This causes confusion
for the FL techniques which often distinguish the incorrect
statements from the others based on the number of failing/-
passing products, as well as the number of failed/passed
test cases. Therefore, eliminating false-passing products can
help to improve the performance of FL techniques.

Figure 9 shows a variability bug (line 4) in the BankAc-
countTP system. The system is sampled into 34 products for
testing. After testing, the bug is revealed in two products,
i.e., there are two failing products and 32 passing products.
By using the program spectra of all of these 34 products
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Table 5
Mitigating the false-passing products’ negative impact on FL performance

Metric Ranking
formula

VarCop SBFL

Original Removing FPs
Adding tests

for FPs Original Removing FPs
Adding tests

for FPs

Rank

Tarantula 3.35 2.52 2.22 5.10 4.75 4.53
Ochiai 2.39 2.23 2.28 3.00 2.77 2.86
Op2 4.31 4.18 4.33 7.03 6.84 6.96
Barinel 3.69 2.83 2.91 5.10 4.74 4.53
Dstar 2.55 2.14 2.19 3.06 2.91 2.98

EXAM

Tarantula 1.35 1.10 1.00 1.89 1.86 1.82
Ochiai 1.02 1.01 0.97 1.12 1.09 1.11
Op2 1.40 1.38 1.40 2.29 2.24 2.27
Barinel 1.46 1.21 1.22 1.89 1.86 1.82
Dstar 1.01 0.94 0.90 1.14 1.09 1.12

1 boolean update(int x){
2 int newWithdraw = withdraw;
3 if (x < 0){
4 newWithdraw += x--;
5 //Patch: x-- => x
6 if (newWithdraw < DAILY_LIMIT) {
7 return false;
8 }
9 }

10 //...
11 }

Figure 9: A variability bug in the feature DailyLimit of system
BankAccountTP

for localizing fault, VARCOP ranks the buggy statement at
7𝑡ℎ and SBFL ranks it at 5𝑡ℎ. However, among the passing
products, there are 14 false-passing products. After detecting
and removing false-passing products, FL performance of
VARCOP and SBFL is improved 30% and 40%, respectively.
Specifically, VARCOP ranks the bug at 5𝑡ℎ and SBFL ranks
it at 3𝑟𝑑 . In this case, CLAP correctly predicted 13 products
as false-passing. As a result, a large number of products,
which contain the bug and are incorrectly considered as
passing products, have been removed. Moreover, we found
that by removing false-passing products, 52 coincidentally
passed tests in these products are also removed. Therefore,
the buggy statement becomes more distinguishable from the
other statements of the system in terms of both product-
based and test case-based assessment.

Additionally, when the products predicted as false-
passing are further tested by better quality test suites, FL
techniques have more useful information to effectively detect
the faults. Specifically, when more tests are added for further
testing false-passing products, the performance of VARCOP
is improved up to 34% in Rank and 26% in EXAM, also these
figures of SBFL are 11% and 4% compared to that they are
applied on the original testing information. In Figure 9, after
adding new tests for detected false-passing products, the bug

is revealed in 2 more products, increasing the number of
failing products from 2 to 4. By using the spectra of these
4 failing products and 18 predicted true-passing products of
the systems, both VARCOP and SBFL could rank the bug
at 3𝑟𝑑 , which is also better than directly removing all 13
detected false-passing products.

However, in some cases, the FL performance after
adding new (failed) tests for false-passing products could
be worse than that when removing all of the detected false-
passing products. The reason is that besides the added tests
which are failed, the original test suites of the false-passing
products already contain test cases which coincidentally
passed (unreliable passed tests). Such tests also produce
noises and negatively affect FL performance. In Figure 10,
the bug (line 2) is ranked 9𝑡ℎ, 3𝑟𝑑 , and 5𝑡ℎ by SBFL in
the original setting and the two mitigation settings. By
adding tests to the detected false-passing products, the
buggy statement’s rank is worse than that of removing all of
these products (5𝑡ℎ vs. 3𝑟𝑑). In this case, two false-passing
products are detected and via added test cases, the bug is
revealed in these products. However, in their test suites,
there are 15 coincidentally passed tests which executed the
faults but cannot reveal the failure. Consequently, using the
program spectra of these products with the original test
suites and added tests decreased the suspicious score of
the buggy statement 0.01 and this causes its rank becomes
worse. For these false-passing products, an analysis to
remove the unreliable passed tests and add new effective test
cases should be designed to help FL techniques improve their
performance, and we leave this for future work.
6.3. Sensitivity Analysis (RQ3)
6.3.1. Impact of evaluation scenarios

Table 6 shows the false-passing product detection per-
formance of CLAP with SVM in four scenarios by differ-
ent degrees of relevance of the training and testing data:
System-based, Version-based, Product-based, and Within-
system editions. Overall, the more relevant training and
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1 public boolean consistent(){
2 for (int i = 0; i < students.length; i--) {
3 //Patch: i-- => i++
4 if (students[i] != null && !students[i].backedOut &&

students[i].points < 0) {
5 return false;
6 }
7 }
8 return true;
9 }

Figure 10: A variability bug in the feature ExamDataBaseImpl
of system ExamDB

Table 6
Impact of different experimental scenarios

Edition Product Precision Recall F1-Score Accuracy

System-based True-passing 85.51% 92.16% 89.15% 88.44%False-passing 89.42% 85.83% 86.83%

Version-based True-passing 88.16% 97.09% 92.41% 90.04%False-passing 94.19% 78.36% 85.55%

Product-based True-passing 87.53% 96.97% 92.01% 89.70%False-passing 94.27% 78.26% 85.52%

Within-system True-passing 88.73% 96.29% 92.21% 92.29%False-passing 96.12% 87.02% 91.16%

Table 7
Clap’s performance on each system in system-based edition

System Product Precision Recall F1-Score Accuracy

BankAccountTP True-passing 89.43% 99.14% 94.04% 94.13%False-passing 99.17% 89.73% 94.21%

Elevator True-passing 60.25% 91.83% 72.76% 74.23%False-passing 92.86% 63.69% 75.56%

Email True-passing 91.19% 84.51% 87.72% 86.95%False-passing 82.50% 89.95% 86.06%

ExamDB True-passing 100.00% 89.58% 94.50% 92.77%False-passing 80.89% 100.00% 89.44%

GPL True-passing 87.47% 94.66% 90.92% 87.71%False-passing 88.29% 74.82% 81.00%

ZipMe True-passing 96.84% 91.51% 94.10% 94.23%False-passing 91.88% 96.98% 94.36%

testing data, the better performance of the false-passing
product detection model. Specifically, in the System-based
edition, the training and testing data are the least relevant
since the testing set contains the systems which are totally
different from the training set. In this edition, the average
classification accuracy is 88.44%. Meanwhile, in the Within-
system edition, the training and testing data are the most
relevant since both the training and testing data contain
products in the buggy versions of the same system. Thus,
these products could share some similar characteristics about
the programs and tests. Intuitively, CLAP can better capture
these attributes and better detect false-passing products.
Specially, the performance of CLAP in the Within-system
edition is 92.29% in Accuracy and 96.12% in false-passing
product prediction Precision, which are higher than those of
System-based edition about 4% and 7%, respectively.

The detail performance of CLAP in each system in the
System-based edition and Within-system edition are shown

Table 8
Clap’s performance on each system in within-system edition

System Product Precision Recall F1-Score Accuracy

BankAccountTP True-passing 96.28% 98.23% 97.25% 97.39%False-passing 98.40% 96.34% 97.36%

Elevator True-passing 72.22% 92.86% 81.25% 85.71%False-passing 95.83% 82.14% 88.46%

Email True-passing 90.58% 97.66% 93.99% 92.98%False-passing 96.67% 87.00% 91.58%

ExamDB True-passing 98.04% 100.00% 99.01% 98.70%False-passing 100.00% 96.30% 98.12%

GPL True-passing 86.74% 97.52% 91.81% 88.48%False-passing 94.00% 70.71% 80.54%

ZipMe True-passing 88.54% 91.45% 89.97% 90.46%False-passing 92.26% 89.60% 90.91%

in Table 7 and Table 8, respectively. For the System-based
edition, CLAP obtained the best performance in BankAc-
countTP and ZipMe systems. For the Within-system edition,
CLAP correctly detected most of true-passing and false-
passing products in the buggy versions of BankAccountTP
and ExamDB systems. Meanwhile, in both editions, the
accuracy of CLAP in the buggy versions of Elevator is the
lowest. One of the reasons is the existence of flaky tests in
their test suites, which negatively affect the model in both
the training and testing phases. The impact of such tests on
the training phase is discussed in Sec. 6.3.2.

In addition, CLAP obtained better false-passing product
detection Recall in the System-based edition (86%) com-
pared to the Version-based edition and Product-based edition
(about 78%), although these two later settings have better
accuracy. This demonstrates that for the System-based edi-
tion, a product has a higher probability to be predicted as a
false-passing product. This is because for the false-passing
products of some systems, their values in several attributes
are significantly smaller than those figures in the products
of the other systems. Consequently, once CLAP learns from
these small values, and then predicts new passing products,
more products will be predicted as false-passing products.
For example, the fault diagnosability (DDU’) attribute, the
average value of the false-passing products of system Email
is 0.81, while this figure of system ExamDB is only 0.6. If
the model learns from products of system ExamDB and then
predicts products of system Email, many products of this
system, including true-passing products, could be predicted
as false-passing products. As a result, the System-based
edition obtained higher false-passing product detection Re-
call, yet lower true-passing product classification Precision
compared to the Version-based edition and the Product-
based edition.

Our approach performed stably in the Version-based
edition and Product-based edition. The reason is that the data
separation methods in these two scenarios are quite similar.
The only difference is that in the Product-based edition, the
training set could contain the products in the same buggy
versions as the testing set. Thus, the detection performance
of CLAP in the Version-based edition and Product-based
edition is quite similar.
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Table 9
Impact of different training data sizes (the number of systems)

#System Product Precision Recall F1-Score Accuracy

1 True-passing 92.02% 81.88% 86.65% 82.60%False-passing 74.90% 93.19% 83.05%

2 True-passing 96.82% 63.07% 76.38% 78.47%False-passing 68.18% 97.44% 80.23%

3 True-passing 95.37% 76.90% 85.14% 85.19%False-passing 77.03% 95.40% 85.24%

4 True-passing 90.18% 81.33% 85.53% 84.81%False-passing 79.48% 89.10% 84.02%

5 True-passing 91.19% 84.51% 87.72% 86.95%False-passing 82.50% 89.95% 86.06%

6.3.2. Impact of training data sizes
Table 9 shows the performance of CLAP by the training

data size with SVM. In general, the larger the training data
set, the better performance of CLAP. If the training set
contains the buggy versions of only one system, CLAP’s
Accuracy is 82.60% and its false-passing product classifica-
tion Precision is 74.9%. When the training data increases to
five systems, the figures of CLAP are improved by about 5%
and 7%, respectively. This is reasonable because by learning
from more data, CLAP can observe and recognize better
false-passing and true-passing products.

However, if added training data contains noises, it could
decrease the performance of CLAP. For example, the Ac-
curacy of CLAP dropped from 82.60% to 78.47% when the
training set is increased from one to two systems. This figure
also slightly declined, about 0.4%, when the training set
increased from three to four systems. The reason is that in
the added systems, there are several “flaky” tests in their
buggy versions. The results of these tests are inconsistent,
sometimes they are passed and sometimes failed without any
code changes [28]. For example, some tests invoked random()

function to get a random number, and then the tests failed
due to the numbers are generated differently in each run, not
because of the bugs in the system. Due to their inconsistent
test results, these tests might create noises for false-passing
product detection tools. Consequently, the performance of
CLAP in these cases are decreased.
6.4. Intrinsic Analysis (RQ4)

To study the impact of each attribute set on CLAP’s
performance, we built several variants of CLAP, each of
them enables a single attribute set: product implementation,
test adequacy, and test effectiveness. In this experiment,
we apply these variants of CLAP in setting cross-system
edition of the two largest systems, GPL and ZipMe. Note
in this experiment, we used SVM in CLAP, the impact of
different classifiers and different setting editions on CLAP’s
performance has been shown in Sec. 6.1 and Sec. 6.3.1.

The product implementation attributes help CLAP achieve
better performance compared to the test adequacy and
test effectiveness attributes. The reason is that the product
implementation attributes directly provide information about
buggy statements in the products. The model using these

Table 10
Impact of attributes on Clap’s performance

System Attributes Product Precision Recall F1-Score Accuracy

GPL

Product
implementation

True-passing 84.69% 87.71% 86.17% 81.52%False-passing 74.80% 69.69% 72.15%

Test
adequacy

True-passing 80.45% 99.74% 89.06% 83.92%False-passing 99.07% 53.69% 69.64%

Test
effectiveness

True-passing 78.74% 96.59% 86.76% 80.64%False-passing 88.50% 50.18% 64.05%

All True-passing 87.47% 94.66% 90.92% 87.71%False-passing 88.29% 74.82% 81.00%

ZipMe

Product
implementation

True-passing 86.09% 99.16% 92.16% 91.53%False-passing 99.00% 83.82% 90.78%

Test
adequacy

True-passing 76.82% 93.54% 84.36% 82.57%False-passing 91.61% 71.50% 80.32%

Test
effectiveness

True-passing 87.39% 48.92% 62.73% 70.79%False-passing 96.84% 91.51% 94.10%

All True-passing 96.84% 91.51% 94.10% 94.23%False-passing 91.88% 96.98% 94.36%

attributes can capture the information about the bugginess of
products, and have better performance. As seen in Table 10,
for GPL, by using the product implementation attributes,
CLAP obtains higher false-passing product detection Recall
than the others. Specifically, only using these attributes,
CLAP obtained 69.69% in false-passing product detection
Recall, while these figures of CLAP with the test adequacy
attributes and test effectiveness attributes are just 53.69%
and 50.18%, respectively. For ZipMe, by using the product
implementation attributes, CLAP can correctly detect more
than 8 false-passing products, while this figure when using
the test adequacy attributes is only 7. Although, using test
effectiveness attributes, CLAP’s false-passing product detec-
tion Recall is better than using the product implementation
attributes, CLAP’s true-passing product detection Recall is
much lower, only 48.92%.

Meanwhile, based on only test quality attributes (the test
adequacy or test effectiveness), the model faces difficulties
on distinguishing true-passing and false-passing products.
As a result, the CLAP’s variants with these attribute have
a very high true-passing product detection Recall but low
false-passing products detection Recall or vice versa. In-
deed, the information about test quality is an important factor
for CLAP to detect true-passing and false-passing products.
However, the low quality of the test suite is just a sign
showing that the test result is less reliable but it cannot
confirm the bugginess of the product. Thus, in some cases,
using only test quality attributes cannot help to detect false-
passing products.

As expected, CLAP obtained the best results when the
failure indications are measured based on all three aspects:
product implementation, test adequacy, and test effective-
ness. By using all of these attributes, CLAP has more com-
prehensive information to evaluate the bugginess in the prod-
uct’s source code, as well as the reliability of the product’s
overall test result. Thus, all of these attributes should be used
together in CLAP to achieve the best performance.
6.5. Time Complexity (RQ5)

On average, CLAP took 53 seconds to measure attributes
of the passing products of a buggy version (about 2.5 sec-
onds/product). Specifically, each buggy version of ExamDB
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took only 3 seconds, meanwhile this figure for each version
of ZipMe is 192 seconds. Indeed, running time of CLAP
depends on the number of sampled products of each system,
the number of test cases of each product, and the system’s
size. The reason is that our attributes are calculated on each
passing product of the system. Also, they are measured based
on the failure indications investigated from all the failed tests
of the failing products of the buggy version. Thus, ExamDB,
which contains the least number of sampled products, has
the smallest running time. Meanwhile, ZipMe has the largest
running time since it is sampled into a large number of
products, each product is tested by a large number of test
cases, and this is also the largest system.
6.6. Threats to Validity

The main threats to the validity of our work are consisted
of internal, external, and construct validity threats.

Threats to internal validity mainly lie in the correct-
ness of the ground truth which we labeled for the passing
products. To mitigate this threat, we applied a systematic
process to label these products. In the step which requires
manual investigation and test generation, we made every
effort to carefully investigate the products. Another threat
is that the ratio of false-passing and true-passing in our
benchmark might be different from the ratio in practice.
To address this threat, we are planning to collect real-
world false-passing and true-passing products in larger SPL
systems to evaluate our technique.

Threats to external validity mainly lie in the bench-
mark used in our experiments. Although the dataset uses
the systems which are widely used in the existing work, this
dataset only contains artificial bugs of Java SPL systems,
so we cannot conclude the similar results for real-world
faults and SPL systems in other programming languages. In
addition, another threat may come from the quality of the
products’ test suites. For instance, the product could contain
low quality test cases (e.g., flaky tests). To mitigate this
threat, we chose the dataset containing a large number of
buggy products with a diversity of artificial faults and each
products are tested by a large number of test cases. Also,
the dataset contains both single-bug and multiple-bug buggy
systems. To address these threats, we are planning to collect
more real-world variability bugs in larger SPL systems to
evaluate our technique.

Threats to construct validity mainly lie in the ratio-
nality of the assessment metrics. To reduce this threat, we
chose the metrics which are widely used in the related
studies [23]. For evaluating our approach of detecting false-
passing products, we use common metrics in classification
problem: Precision, Recall, F1-Score, and Accuracy. For
evaluating how CLAP helps to mitigate the negative impact
of false-passing products on FL performance, we used the
most popular metrics in FL studies, Rank and EXAM. For
assessing the performance of the classifiers, we following
the instructions from the related studies [23, 29] for choosing
the value of 𝑘 = 5 for 𝑘-fold cross-validation. Another threat
may come from our selected SBFL metrics. To reduce this

threat, we chose five most popular SBFL metrics, which are
widely used in FL studies [7, 24].

7. Related Work
Coincidental Correctness Detection and Impact Mitiga-
tion. Coincidental correctness has been proven as a prevalent
problem in software testing [2]. Also, practical experiments
have been conducted to demonstrate that this problem ad-
versely affects FL performance [2, 30, 31]. Many tech-
niques have been proposed to detect coincidentally passed
tests [2, 32, 33, 34], which execute the faults, yet produce
correct outputs. After that, they cleansed the test suites from
these detected unreliable tests to enhance FL performance.
Bandyopadhyay et al. [35] proposed an approach to pre-
dict and weight coincidentally passed tests to calculate the
suspiciousness scores. In general, these approaches investi-
gate each individual passed test case to detect coincidental
correctness and boost FL performance in non-configurable
code. These studies are different from our work which is
designed for configurable code. Instead of verifying test
cases, we verify the overall test result of a product, i.e., the
state of passing all its tests. In addition, CLAP focuses on
improving variability FL performance in SPL systems.
Test Suite Effectiveness Measurement. Various metrics
have been proposed to measure the quality of the test suites.
Specially, code coverage is one of the most popular metrics,
which measures the percentage of code elements (e.g., state-
ments, branches, decisions, etc.) covered by test suites [36].
Also, Perez et al. [15] proposed DDU which aims at mea-
suring the effectiveness of the suites in term of applying
SBFL to detect faults in the corresponding source code.
Gonzalez-Sanchez et al. [37] employed information gain
algorithm to predict the efficiency of the test suites based
on the system’s size, the coverage density, and the uniform
of coverage distribution. Baudry et al. [38] proposed a test
criterion based on the Dynamic Basic Block, the test data
(traces), and the software control structure to evaluate the
fault localizing capacity of the test cases. Besides, mutation
testing techniques [39, 40] are also proposed to evaluate the
effectiveness of the test suites in detecting mutated faults.
Testing SPL Systems. Testing an SPL system is a com-
plex and costly task since the variety of the interactions of
system features and a large number of derived products. A
large number of studies have been conducted, and various
testing strategies have been proposed. To efficiently assure
software quality, various sampling algorithms have been in-
troduced [41, 42, 43, 44, 13, 12, 45]. In addition, to improve
the efficiency of the testing process, several approaches
about configuration selection [46, 47] and configuration
prioritization [48, 49, 50] have also been proposed. These
studies’ objective is different from ours. They target the size
of sample sets and the fault-detection capability, i.e., whether
the faults of the system are explored via testing sampled
products. Meanwhile, our focus is the consistency of the
overall testing results of the sampled products. Specifically,
we verify the sampled products and their test suites to
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guarantee that if a fault cause failure for a product, any other
product containing the same fault should be failed by at least
a test. As shown in Sec. 4, the failure indications given by
CLAP could be utilized to guide the existing test generators
to improve the quality of test suites.
Fault Localization. There are various approaches proposed
to identify the locations of faults in programs [7, 51, 52, 53].
Program slicing [54, 55] improves the efficiency of find-
ing faults by detecting and removing irrelevant elements
in source code. In addition, SBFL leverages the execution
information (i.e., program spectra) of a program to localize
bugs which cause program’s failures. Moreover, several
studies [56, 57] have shown that the FL performance is im-
proved by combining SBFL technique with slicing methods.
Also, Arrieta et al. [5] use SBFL metrics to localize bugs
in SPL system at the feature-level. For localizing variability
bugs in SPL systems at the statement-level, VARCOP [6, 58]
analyzes the overall test results of the sampled products and
their source code to isolate suspicious code statements. After
that, each of isolated suspicious statements is measured
the suspiciousness according to both the overall test results
of the sampled products and the individual result of each
test case. As shown in Sec. 6.2, our approach could be
applied before localizing variability faults to improve the
fault localization performance of existing techniques.

8. Conclusion
In an SPL system, variability bugs can cause failures in

certain products (buggy products). However, these buggy
products could be incorrectly considered as passing products
due to the ineffectiveness of their test suites in detecting
the bugs. The buggy products which still passed all the
tests in their test suits are called false-passing products.
Our empirical study has shown that false-passing products
can produce negative impacts on FL performance. This
paper introduces CLAP, a novel approach to detect false-
passing products in SPL systems. Our key idea is that the
stronger failure indications in the passing product, the more
likely the product is false-passing. The failure indications
are derived from the failing products of the system based on
products’ implementation and products’ test quality. Then
a passing product is measured according to these indica-
tions to determine its possibility to be false-passing. Our
experimental results on a large dataset of 823 buggy SPL
systems with 14,191 false-passing products and 22,555 true-
passing products show that CLAP can effectively classify
false-passing and true-passing products of the SPL systems,
with the average Accuracy of more than 90%. In different ex-
perimental scenarios, the precision of false-passing product
detection by CLAP is up to 96%. Furthermore, we propose
simple and effective methods to mitigate the negative impact
of false-passing products on fault localization performance.
These methods can effectively help the state-of-the-art FL
techniques improve their performance by up to 34%.
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